\documentclass[a11paper, 11pt]{article} % xelatex \usepackage{titlepage} \usepackage{booktabs} \usepackage{bookmark} \usepackage{subcaption} % \usepackage[american]{circuitikz} % \usepackage{showframe} \usepackage{float} \usepackage{multicol} \usepackage{siunitx} \usepackage{amsmath} \usepackage{mathtools} \usepackage{cancel} \usepackage[dvipsnames]{xcolor} \usepackage[T1]{fontenc} \usepackage{csquotes} \usepackage[french]{babel} \usepackage{hyperref} \usepackage[french]{cleveref} \newcommand{\note}[1]{\begin{color}{Orange}\textbf{NOTE:} #1\end{color}} \newcommand{\fixme}[1]{\begin{color}{Fuchsia}\textbf{FIXME:} #1\end{color}} \newcommand{\question}[1]{\begin{color}{ForestGreen}\textbf{QUESTION:} #1\end{color}} % \d{x} command for integral delimiters \renewcommand{\d}[1]{\mathrm{d}#1} \newcommand{\dt}{\mathrm{d}t} \newcommand{\ddt}[1]{\frac{\text{d}^{#1}}{\text{d}t^{#1}}} \newcommand{\vlt}{V_L(t)} \newcommand{\vct}{V_C(t)} \newcommand{\vrt}{V_R(t)} \newcommand{\vst}{V_S(t)} \newcommand{\vlz}{V_L(0)} \newcommand{\ilt}{I_L(t)} \newcommand{\ict}{I_C(t)} \newcommand{\al}{\alpha} \newcommand{\la}{\lambda} \newcommand{\wz}{\omega_{0}} \newcommand{\ws}{\omega_{0}^2} \newcommand{\wn}{\omega_{\mathrm{n}}} \newcommand{\rootd}{\sqrt{\al^2-\ws}} \DeclareSIPrefix{\micro}{% \text{% \fontencoding{TS1}\fontfamily{kurier}\selectfont \symbol{"B5}% }% }{-6} % \addbibresource{bibliography.bib} % \institution{Université de Sherbrooke} % \faculty{Faculté de génie} % \department{Département de génie électrique et de génie informatique} \title{Annexe de résolution à la problématique} \class{Circuits et systèmes du deuxième ordre} \classnb{GEN111,GEN136,GEN122} \author{ \addtolength{\tabcolsep}{-0.4em} \begin{tabular}{rcl} % Ajouter des auteurs au besoin Benjamin Chausse & -- & CHAB1704 \\ Sarah Gosselin & -- & GOSS3005 \\ \end{tabular} } \teacher{Jean-Philippe Gouin} % \location{Sherbrooke} % \date{\today} \begin{document} \maketitle \newpage \begin{appendix} \section{Outils mathématiques (Bible)} Les fonction suivantes seront utilisées et référencé tout au long de l'annexe. \begin{gather} \vct = \frac{1}{C}\int\ict \dt \label{eq:vct}\\ \ict = C\frac{\text{d}}{\dt}\vct \label{eq:ict}\\ \nonumber\\ \vlt = L\frac{\text{d}}{\dt}\ilt \label{eq:vlt}\\ \ilt = \frac{1}{L}\int \vlt\dt \label{eq:ilt}\\ \nonumber\\ V(t) = RI(t) \label{eq:vri}\\ \nonumber\\ \al = \frac{R}{2L} \label{eq:alpha}\\ \omega_0 = \frac{1}{\sqrt{LC}} \label{eq:omega_0}\\ \omega_n = \sqrt{\omega_0^2 - \al^2 \label{eq:omega_n}} \end{gather} \newpage \section{Circuit RLC} \subsection{Charge} On pose l'équation de l'état du circuit au temp $t(0)$ et on substitue pour avoir en fonction de $\vlt$. Puisque que circuit simplifié est constituer d'une seule boucle, le courant se simplifie comme suit: $I_C = I_R = I_V = I$. \begin{gather} \vst = \vct + \vrt + \vlt \\ \vst = \frac{1}{C}\int I(t) \dt + RI(t) + \vlt \\ \vst = \frac{1}{CL} \iint \vlt \dt\ \dt + \frac{R}{L}\int\vlt\dt + \vlt\\ \nonumber \text{On substitue les termes $R, L, C$ par les \cref{eq:alpha,eq:omega_0}}\\ \ddt{2}V_S = \ddt{2}\vlt + 2\al\ddt{}\vlt + \omega^2\vlt\\ \nonumber \text{On pose la forme de la solution homogène: } V_{L_h} = Ae^{\la t} = 0\\ 0 = \la^2Ae^{\la t} + 2\al\la Ae^{\la t} + \omega_0^2Ae^{\la t}\\ 0 = \cancelto{0}{Ae^{\la t}}\left(\la^2 + 2\al\la + \omega_0\right)\\ \la_{1,2} = \frac{-2\al \pm \sqrt{(2\al)^2 - 4\omega_0^2}}{2}\\ \la_{1,2} = -\al\pm\sqrt{\al^2 - \omega_0^2}\\ \nonumber\text{Puisque le discriminant est négatif, on le multiplie par $-1$ et on sort $j$.}\\ % \la_{1,2} = -\al\pm j\sqrt{\} \end{gather} \subsection{Décharge} \begin{gather*} \begin{align} 0 & = \vlt + V_C(t) + V_R(t) \\ 0 & = \vlt+\frac{1}{C}\int I_(t)\dt + R_I(t) \\ 0 & = \ddt{2}\left[ \vlt + \frac{1}{LC}\iint\vlt\dt^2 + \frac{R}{L}\ddt{} \vlt \right] \\ 0 & = \ddt{2}\vlt+ \frac{R}{L}\ddt{}\vlt +\frac{1}{LC}\vlt \\ 0 & = \ddt{2}+\vlt+2\al\ddt{}\vlt+\ws \\ \nonumber\text{Posons que: } & \vlt=Ae^{\la t} \Rightarrow \ddt{}\vlt=\la Ae^{\la t} \Rightarrow \ddt{2}\vlt=\la^{2}Ae^{\la t} \\ 0 & = \la^2Ae^{\la t} +2\al Ae^{\la t} + \ws Ae^{\la t} \\ 0 & = Ae^{\la t} \left(\la^2 +2\al\la+\ws \right) \\ 0 & = \la^2 +2\al\la+\ws \\ \la_{1,2} & = \frac{-2\al\pm\sqrt{(-2\al)^2-4\ws}}{2(-2\al)} \\ \la{1,2} & = -\al\pm\sqrt{\al^2-\ws} \end{align} \end{gather*} Puisque $R$ est de l'ordre des \si{\kohm} et $L$ de l'ordre des \SI{}{\mH}, on peut déterminer sans faire de calculs que l'intérieur de la racine carrée $\wn$ est posifive. Donc nul besoin de passer par notre ami Euler pour déterminer les valeurs de $\la$. Nous pouvons maintenant réintégrer ce coefficient dans notre supposition initiale que $\vlt=Ae^{\la t}$. \begin{equation} \vlt = A_1e^{\al-\rootd} + A_2e^{\al+\rootd} \\ \end{equation} Pour déterminer les constantes $A_1$ et $A_2$, il faut une deuxième équation dont on connait les charactéristiques à un temps donné. On peut obtenir en dérivant l'équation de $\vlt$ dont il est possible de déterminer les propriétés à $t=0$. Lors de la simulation \textit{LTspice}, les spécifications de décharge du circuit généraient déjà une régression exponentielle suffisament rapides pour les besoins du circuit. La valeur de $R_1$ (\SI{100}{\kohm}) est donc gardée idem utilisée dans le calcul de la dérivée pour en simplifier la résolution. \end{appendix} \end{document}