summaryrefslogtreecommitdiff
diff options
context:
space:
mode:
authorSarah Gosselin <sarah@gosselin.xyz>2024-12-03 17:29:16 -0500
committerSarah Gosselin <sarah@gosselin.xyz>2024-12-03 17:29:16 -0500
commit663b8f8b7560508afbac568412cfda9ea57130c5 (patch)
treee763def175070eedc271ccb5cb9c1ec45244c85b
parentc2b606812a374ab8cb0059b1e81f8a255ba32610 (diff)
wip
-rw-r--r--annexe/main.tex35
1 files changed, 23 insertions, 12 deletions
diff --git a/annexe/main.tex b/annexe/main.tex
index 645b6e1..9b4a50f 100644
--- a/annexe/main.tex
+++ b/annexe/main.tex
@@ -66,28 +66,39 @@
\newpage
\begin{appendix}
+ Les fonction suivnate seront utilisé tout au long de l'annexe a des fins de substitution.
+
+ \begin{gather}
+ V_C(t) = \frac{1}{C}\int I_C(t) \dt\\
+ I_C(t) = C\frac{\text{d}}{\dt}V_C(t)\\
+ \bigskip
+ V_L(t) = L\frac{\text{d}}{\dt}I_L(t)\\
+ I_L(t) = \frac{1}{L}\int V_L(t)\dt
+ \end{gather}
+
\section{Circuit RLC}
\subsection{Charge}
On pose l'équation de l'état du circuit au temp $t(0)$ et on substitue pour
avoir en fonction de $\vlt$.
Puisque que circuit simplifié est constituer d'une seule boucle,
$I_C = I_R = I_V = I$
- \begin{gather}
- V_S &= V_C(t) + V_R(t) + V_L(t) \\
- V_S &= \frac{1}{C}\int I(t) \dt + RI(t) + V_L \\
- V_S &= \frac{1}{CL}\int\int \vlt \dt\dt + \frac{R}{L}\int\vlt\dt + V_L \\
-
+ \begin{gather}
+ V_S = V_C(t) + V_R(t) + V_L(t) \\
+ V_S = \frac{1}{C}\int I(t) \dt + RI(t) + V_L \\
+ V_S = \frac{1}{CL}\int\int \vlt \dt\ \dt + \frac{R}{L}\int\vlt\dt + V_L
\end{gather}
\subsection{Décharge}
- \begin{align}
- 0 & = \vlt + V_C(t) + V_R(t) \\
- 0 & = \vlt+\frac{1}{C}\int I_(t)\dt + R_I(t) \\
- 0 & = \ddt{2}\left[ \vlt + \frac{1}{LC}\int\int\vlt\dt^2 + \frac{R}{L}\ddt{} \vlt \right] \\
- 0 & = \ddt{2}\vlt+ \frac{R}{L}\ddt{}\vlt +\frac{1}{LC}\vlt \\
- 0 & = \ddt{2}+2\al\la A\e
- \end{align}
+ \begin{gather*}
+ \begin{align}
+ 0 & = \vlt + V_C(t) + V_R(t) \\
+ 0 & = \vlt+\frac{1}{C}\int I_(t)\dt + R_I(t) \\
+ 0 & = \ddt{2}\left[ \vlt + \frac{1}{LC}\iint\vlt\dt^2 + \frac{R}{L}\ddt{} \vlt \right] \\
+ 0 & = \ddt{2}\vlt+ \frac{R}{L}\ddt{}\vlt +\frac{1}{LC}\vlt \\
+ 0 & = \ddt{2}+2\al\la A\e
+ \end{align}
+ \end{gather*}
\end{appendix}
\end{document}