summaryrefslogtreecommitdiff
path: root/annexe
diff options
context:
space:
mode:
Diffstat (limited to 'annexe')
-rw-r--r--annexe/main.tex33
1 files changed, 22 insertions, 11 deletions
diff --git a/annexe/main.tex b/annexe/main.tex
index 5e270fb..650bc8e 100644
--- a/annexe/main.tex
+++ b/annexe/main.tex
@@ -5,12 +5,14 @@
\usepackage{booktabs}
\usepackage{bookmark}
\usepackage{subcaption}
-\usepackage[american]{circuitikz}
+% \usepackage[american]{circuitikz}
% \usepackage{showframe}
\usepackage{float}
\usepackage{multicol}
\usepackage{siunitx}
\usepackage{amsmath}
+\usepackage{mathtools}
+\usepackage{cancel}
\usepackage[dvipsnames]{xcolor}
\usepackage[T1]{fontenc}
\usepackage{csquotes}
@@ -32,6 +34,9 @@
\newcommand{\vst}{V_S(t)}
\newcommand{\vlz}{V_L(0)}
+\newcommand{\ilt}{I_L(t)}
+\newcommand{\ict}{I_C(t)}
+
\newcommand{\al}{\alpha}
\newcommand{\la}{\lambda}
\newcommand{\wz}{\omega_{0}}
@@ -73,11 +78,11 @@
Les fonction suivantes seront utilisées et référencé tout au long de l'annexe.
\begin{gather}
- V_C(t) = \frac{1}{C}\int I_C(t) \dt \label{eq:vct}\\
- I_C(t) = C\frac{\text{d}}{\dt}V_C(t) \label{eq:ict}\\
+ \vct = \frac{1}{C}\int\ict \dt \label{eq:vct}\\
+ \ict = C\frac{\text{d}}{\dt}\vct \label{eq:ict}\\
\nonumber\\
- V_L(t) = L\frac{\text{d}}{\dt}I_L(t) \label{eq:vlt}\\
- I_L(t) = \frac{1}{L}\int V_L(t)\dt \label{eq:ilt}\\
+ \vlt = L\frac{\text{d}}{\dt}\ilt \label{eq:vlt}\\
+ \ilt = \frac{1}{L}\int \vlt\dt \label{eq:ilt}\\
\nonumber\\
V(t) = RI(t) \label{eq:vri}\\
\nonumber\\
@@ -96,12 +101,18 @@
\begin{gather}
- V_S = V_C(t) + V_R(t) + V_L(t) \\
- V_S = \frac{1}{C}\int I(t) \dt + RI(t) + V_L \\
- V_S = \frac{1}{CL} \iint \vlt \dt\ \dt + \frac{R}{L}\int\vlt\dt + V_L\\
- \ddt{2}V_S = \ddt{2}\vlt + \frac{R}{L}\ddt{}\vlt + \frac{1}{CL}\vlt\\
- \nonumber\\
- \nonumber \text{On pose la forme de la solution homogène: } V_{L_h} = Ae^{\la t}\\
+ \vst = \vct + \vrt + \vlt \\
+ \vst = \frac{1}{C}\int I(t) \dt + RI(t) + \vlt \\
+ \vst = \frac{1}{CL} \iint \vlt \dt\ \dt + \frac{R}{L}\int\vlt\dt + \vlt\\
+ \nonumber \text{On substitue les termes $R, L, C$ par les \cref{eq:alpha,eq:omega_0}}\\
+ \ddt{2}V_S = \ddt{2}\vlt + 2\al\ddt{}\vlt + \omega^2\vlt\\
+ \nonumber \text{On pose la forme de la solution homogène: } V_{L_h} = Ae^{\la t} = 0\\
+ 0 = \la^2Ae^{\la t} + 2\al\la Ae^{\la t} + \omega_0^2Ae^{\la t}\\
+ 0 = \cancelto{0}{Ae^{\la t}}\left(\la^2 + 2\al\la + \omega_0\right)\\
+ \la_{1,2} = \frac{-2\al \pm \sqrt{(2\al)^2 - 4\omega_0^2}}{2}\\
+ \la_{1,2} = -\al\pm\sqrt{\al^2 - \omega_0^2}\\
+ \nonumber\text{Puisque le discriminant est négatif, on le multiplie par $-1$ et on sort $j$.}\\
+ % \la_{1,2} = -\al\pm j\sqrt{\}
\end{gather}
\subsection{Décharge}