diff options
author | Sarah Gosselin <sarah@gosselin.xyz> | 2024-12-03 17:29:16 -0500 |
---|---|---|
committer | Sarah Gosselin <sarah@gosselin.xyz> | 2024-12-03 17:29:16 -0500 |
commit | 663b8f8b7560508afbac568412cfda9ea57130c5 (patch) | |
tree | e763def175070eedc271ccb5cb9c1ec45244c85b /annexe/main.tex | |
parent | c2b606812a374ab8cb0059b1e81f8a255ba32610 (diff) |
wip
Diffstat (limited to 'annexe/main.tex')
-rw-r--r-- | annexe/main.tex | 35 |
1 files changed, 23 insertions, 12 deletions
diff --git a/annexe/main.tex b/annexe/main.tex index 645b6e1..9b4a50f 100644 --- a/annexe/main.tex +++ b/annexe/main.tex @@ -66,28 +66,39 @@ \newpage \begin{appendix} + Les fonction suivnate seront utilisé tout au long de l'annexe a des fins de substitution. + + \begin{gather} + V_C(t) = \frac{1}{C}\int I_C(t) \dt\\ + I_C(t) = C\frac{\text{d}}{\dt}V_C(t)\\ + \bigskip + V_L(t) = L\frac{\text{d}}{\dt}I_L(t)\\ + I_L(t) = \frac{1}{L}\int V_L(t)\dt + \end{gather} + \section{Circuit RLC} \subsection{Charge} On pose l'équation de l'état du circuit au temp $t(0)$ et on substitue pour avoir en fonction de $\vlt$. Puisque que circuit simplifié est constituer d'une seule boucle, $I_C = I_R = I_V = I$ - \begin{gather} - V_S &= V_C(t) + V_R(t) + V_L(t) \\ - V_S &= \frac{1}{C}\int I(t) \dt + RI(t) + V_L \\ - V_S &= \frac{1}{CL}\int\int \vlt \dt\dt + \frac{R}{L}\int\vlt\dt + V_L \\ - + \begin{gather} + V_S = V_C(t) + V_R(t) + V_L(t) \\ + V_S = \frac{1}{C}\int I(t) \dt + RI(t) + V_L \\ + V_S = \frac{1}{CL}\int\int \vlt \dt\ \dt + \frac{R}{L}\int\vlt\dt + V_L \end{gather} \subsection{Décharge} - \begin{align} - 0 & = \vlt + V_C(t) + V_R(t) \\ - 0 & = \vlt+\frac{1}{C}\int I_(t)\dt + R_I(t) \\ - 0 & = \ddt{2}\left[ \vlt + \frac{1}{LC}\int\int\vlt\dt^2 + \frac{R}{L}\ddt{} \vlt \right] \\ - 0 & = \ddt{2}\vlt+ \frac{R}{L}\ddt{}\vlt +\frac{1}{LC}\vlt \\ - 0 & = \ddt{2}+2\al\la A\e - \end{align} + \begin{gather*} + \begin{align} + 0 & = \vlt + V_C(t) + V_R(t) \\ + 0 & = \vlt+\frac{1}{C}\int I_(t)\dt + R_I(t) \\ + 0 & = \ddt{2}\left[ \vlt + \frac{1}{LC}\iint\vlt\dt^2 + \frac{R}{L}\ddt{} \vlt \right] \\ + 0 & = \ddt{2}\vlt+ \frac{R}{L}\ddt{}\vlt +\frac{1}{LC}\vlt \\ + 0 & = \ddt{2}+2\al\la A\e + \end{align} + \end{gather*} \end{appendix} \end{document} |