summaryrefslogtreecommitdiff
path: root/annexe
diff options
context:
space:
mode:
authorBenjamin Chausse <benjamin@chausse.xyz>2024-12-03 22:51:02 -0500
committerBenjamin Chausse <benjamin@chausse.xyz>2024-12-03 22:51:02 -0500
commit2306b0cfd24cff924392a497f3178baea6d642c3 (patch)
treeb62560b02b4ea98dee77ad3215299206c1a85965 /annexe
parent44e2b10dc0dd03f7d9bba1b21f3a3631906978f4 (diff)
fix bug
Diffstat (limited to 'annexe')
-rw-r--r--annexe/main.tex24
1 files changed, 12 insertions, 12 deletions
diff --git a/annexe/main.tex b/annexe/main.tex
index 072e927..b094801 100644
--- a/annexe/main.tex
+++ b/annexe/main.tex
@@ -163,21 +163,21 @@
\subsection{Décharge}
\begin{gather*}
\begin{align}
- 0 & = \vlt + V_C(t) + V_R(t) \\
+ 0 & = \vlt + V_C(t) + V_R(t) \\
\label{eq:rlc_decharge_initial}
- 0 & = \vlt+\frac{1}{C}\int I_(t)\dt + R_I(t) \\
- 0 & = \ddt{2}\left[ \vlt + \frac{1}{LC}\iint\vlt\dt^2 + \frac{R}{L}\ddt{} \vlt \right] \\
- 0 & = \ddt{2}\vlt+ \frac{R}{L}\ddt{}\vlt +\frac{1}{LC}\vlt \\
- 0 & = \ddt{2}+\vlt+2\al\ddt{}\vlt+\ws \\
- \nonumber\text{Posons que: }
+ 0 & = \vlt+\frac{1}{C}\int I_(t)\dt + R_I(t) \\
+ 0 & = \ddt{2}\left[ \vlt + \frac{1}{LC}\iint\vlt\dt^2 + \frac{R}{L}\ddt{} \vlt \right] \\
+ 0 & = \ddt{2}\vlt+ \frac{R}{L}\ddt{}\vlt +\frac{1}{LC}\vlt \\
+ 0 & = \ddt{2}+\vlt+2\al\ddt{}\vlt+\ws \\
+ \nonumber \text{Posons que: } &
\vlt=Ae^{\la t} \Rightarrow
\ddt{}\vlt=\la Ae^{\la t} \Rightarrow
- \ddt{2}\vlt=\la^{2}Ae^{\la t} \\
- 0 & = \la^2Ae^{\la t} +2\al Ae^{\la t} + \ws Ae^{\la t} \\
- 0 & = Ae^{\la t} \left(\la^2 +2\al\la+\ws \right) \\
- 0 & = \la^2 +2\al\la+\ws \\
- \la_{1,2} & = \frac{-2\al\pm\sqrt{(-2\al)^2-4\ws}}{2(-2\al)} \\
- \la_{1,2} & = -\al\pm\sqrt{\al^2-\ws}
+ \ddt{2}\vlt=\la^{2}Ae^{\la t} \\
+ 0 & = \la^2Ae^{\la t} +2\al Ae^{\la t} + \ws Ae^{\la t} \\
+ 0 & = Ae^{\la t} \left(\la^2 +2\al\la+\ws \right) \\
+ 0 & = \la^2 +2\al\la+\ws \\
+ \la_{1,2} & = \frac{-2\al\pm\sqrt{(-2\al)^2-4\ws}}{2(-2\al)} \\
+ \la_{1,2} & = -\al\pm\sqrt{\al^2-\ws}
\end{align}
\end{gather*}
Puisque $R$ est de l'ordre des \si{\kohm} et $L$ de l'ordre des \SI{}{\mH}, on peut déterminer