summaryrefslogtreecommitdiff
path: root/pb_logique_seq.srcs/sources_1/imports/new/i2c_master.vhd
blob: a4fe165e03b2d839c8a9dd100aaf12af0c7d4300 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
--------------------------------------------------------------------------------
--
--   FileName:         i2c_master.vhd
--   Dependencies:     none
--   Design Software:  Quartus II 64-bit Version 13.1 Build 162 SJ Full Version
--
--   HDL CODE IS PROVIDED "AS IS."  DIGI-KEY EXPRESSLY DISCLAIMS ANY
--   WARRANTY OF ANY KIND, WHETHER EXPRESS OR IMPLIED, INCLUDING BUT NOT
--   LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A
--   PARTICULAR PURPOSE, OR NON-INFRINGEMENT. IN NO EVENT SHALL DIGI-KEY
--   BE LIABLE FOR ANY INCIDENTAL, SPECIAL, INDIRECT OR CONSEQUENTIAL
--   DAMAGES, LOST PROFITS OR LOST DATA, HARM TO YOUR EQUIPMENT, COST OF
--   PROCUREMENT OF SUBSTITUTE GOODS, TECHNOLOGY OR SERVICES, ANY CLAIMS
--   BY THIRD PARTIES (INCLUDING BUT NOT LIMITED TO ANY DEFENSE THEREOF),
--   ANY CLAIMS FOR INDEMNITY OR CONTRIBUTION, OR OTHER SIMILAR COSTS.
--
--   Version History
--   Version 1.0 11/01/2012 Scott Larson
--     Initial Public Release
--   Version 2.0 06/20/2014 Scott Larson
--     Added ability to interface with different slaves in the same transaction
--     Corrected ack_error bug where ack_error went 'Z' instead of '1' on error
--     Corrected timing of when ack_error signal clears
--   Version 2.1 10/21/2014 Scott Larson
--     Replaced gated clock with clock enable
--     Adjusted timing of SCL during start and stop conditions
--   Version 2.2 02/05/2015 Scott Larson
--     Corrected small SDA glitch introduced in version 2.1
-- 
--------------------------------------------------------------------------------

LIBRARY ieee;
USE ieee.std_logic_1164.all;
USE ieee.std_logic_unsigned.all;

ENTITY i2c_master IS
  GENERIC(
    input_clk : INTEGER := 50_000_000; --input clock speed from user logic in Hz
    bus_clk   : INTEGER := 400_000);   --speed the i2c bus (scl) will run at in Hz
  PORT(
    clk       : IN     STD_LOGIC;                    --system clock
    reset_n   : IN     STD_LOGIC;                    --active low reset
    ena       : IN     STD_LOGIC;                    --latch in command
    addr      : IN     STD_LOGIC_VECTOR(6 DOWNTO 0); --address of target slave
    rw        : IN     STD_LOGIC;                    --'0' is write, '1' is read
    data_wr   : IN     STD_LOGIC_VECTOR(7 DOWNTO 0); --data to write to slave
    busy      : OUT    STD_LOGIC;                    --indicates transaction in progress
    data_rd   : OUT    STD_LOGIC_VECTOR(7 DOWNTO 0); --data read from slave
    ack_error : BUFFER STD_LOGIC;                    --flag if improper acknowledge from slave
    sda       : INOUT  STD_LOGIC;                    --serial data output of i2c bus
    scl       : INOUT  STD_LOGIC);                   --serial clock output of i2c bus
END i2c_master;

ARCHITECTURE logic OF i2c_master IS
  CONSTANT divider  :  INTEGER := (input_clk/bus_clk)/4; --number of clocks in 1/4 cycle of scl
  TYPE machine IS(ready, start, command, slv_ack1, wr, rd, slv_ack2, mstr_ack, stop); --needed states
  SIGNAL state         : machine;                        --state machine
  SIGNAL data_clk      : STD_LOGIC;                      --data clock for sda
  SIGNAL data_clk_prev : STD_LOGIC;                      --data clock during previous system clock
  SIGNAL scl_clk       : STD_LOGIC;                      --constantly running internal scl
  SIGNAL scl_ena       : STD_LOGIC := '0';               --enables internal scl to output
  SIGNAL sda_int       : STD_LOGIC := '1';               --internal sda
  SIGNAL sda_ena_n     : STD_LOGIC;                      --enables internal sda to output
  SIGNAL addr_rw       : STD_LOGIC_VECTOR(7 DOWNTO 0);   --latched in address and read/write
  SIGNAL data_tx       : STD_LOGIC_VECTOR(7 DOWNTO 0);   --latched in data to write to slave
  SIGNAL data_rx       : STD_LOGIC_VECTOR(7 DOWNTO 0);   --data received from slave
  SIGNAL bit_cnt       : INTEGER RANGE 0 TO 7 := 7;      --tracks bit number in transaction
  SIGNAL stretch       : STD_LOGIC := '0';               --identifies if slave is stretching scl
BEGIN

  --generate the timing for the bus clock (scl_clk) and the data clock (data_clk)
  PROCESS(clk, reset_n)
    VARIABLE count  :  INTEGER RANGE 0 TO divider*4;  --timing for clock generation
  BEGIN
    IF(reset_n = '0') THEN                --reset asserted
      stretch <= '0';
      count := 0;
    ELSIF(clk'EVENT AND clk = '1') THEN
      data_clk_prev <= data_clk;          --store previous value of data clock
      IF(count = divider*4-1) THEN        --end of timing cycle
        count := 0;                       --reset timer
      ELSIF(stretch = '0') THEN           --clock stretching from slave not detected
        count := count + 1;               --continue clock generation timing
      END IF;
      CASE count IS
        WHEN 0 TO divider-1 =>            --first 1/4 cycle of clocking
          scl_clk <= '0';
          data_clk <= '0';
        WHEN divider TO divider*2-1 =>    --second 1/4 cycle of clocking
          scl_clk <= '0';
          data_clk <= '1';
        WHEN divider*2 TO divider*3-1 =>  --third 1/4 cycle of clocking
          scl_clk <= '1';                 --release scl
          IF(scl = '0') THEN              --detect if slave is stretching clock
            stretch <= '1';
          ELSE
            stretch <= '0';
          END IF;
          data_clk <= '1';
        WHEN OTHERS =>                    --last 1/4 cycle of clocking
          scl_clk <= '1';
          data_clk <= '0';
      END CASE;
    END IF;
  END PROCESS;

  --state machine and writing to sda during scl low (data_clk rising edge)
  PROCESS(clk, reset_n)
  BEGIN
    IF(reset_n = '0') THEN                 --reset asserted
      state <= ready;                      --return to initial state
      busy <= '1';                         --indicate not available
      scl_ena <= '0';                      --sets scl high impedance
      sda_int <= '1';                      --sets sda high impedance
      ack_error <= '0';                    --clear acknowledge error flag
      bit_cnt <= 7;                        --restarts data bit counter
      data_rd <= "00000000";               --clear data read port
    ELSIF(clk'EVENT AND clk = '1') THEN
      IF(data_clk = '1' AND data_clk_prev = '0') THEN  --data clock rising edge
        CASE state IS
          WHEN ready =>                      --idle state
            IF(ena = '1') THEN               --transaction requested
              busy <= '1';                   --flag busy
              addr_rw <= addr & rw;          --collect requested slave address and command
              data_tx <= data_wr;            --collect requested data to write
              state <= start;                --go to start bit
            ELSE                             --remain idle
              busy <= '0';                   --unflag busy
              state <= ready;                --remain idle
            END IF;
          WHEN start =>                      --start bit of transaction
            busy <= '1';                     --resume busy if continuous mode
            sda_int <= addr_rw(bit_cnt);     --set first address bit to bus
            state <= command;                --go to command
          WHEN command =>                    --address and command byte of transaction
            IF(bit_cnt = 0) THEN             --command transmit finished
              sda_int <= '1';                --release sda for slave acknowledge
              bit_cnt <= 7;                  --reset bit counter for "byte" states
              state <= slv_ack1;             --go to slave acknowledge (command)
            ELSE                             --next clock cycle of command state
              bit_cnt <= bit_cnt - 1;        --keep track of transaction bits
              sda_int <= addr_rw(bit_cnt-1); --write address/command bit to bus
              state <= command;              --continue with command
            END IF;
          WHEN slv_ack1 =>                   --slave acknowledge bit (command)
            IF(addr_rw(0) = '0') THEN        --write command
              sda_int <= data_tx(bit_cnt);   --write first bit of data
              state <= wr;                   --go to write byte
            ELSE                             --read command
              sda_int <= '1';                --release sda from incoming data
              state <= rd;                   --go to read byte
            END IF;
          WHEN wr =>                         --write byte of transaction
            busy <= '1';                     --resume busy if continuous mode
            IF(bit_cnt = 0) THEN             --write byte transmit finished
              sda_int <= '1';                --release sda for slave acknowledge
              bit_cnt <= 7;                  --reset bit counter for "byte" states
              state <= slv_ack2;             --go to slave acknowledge (write)
            ELSE                             --next clock cycle of write state
              bit_cnt <= bit_cnt - 1;        --keep track of transaction bits
              sda_int <= data_tx(bit_cnt-1); --write next bit to bus
              state <= wr;                   --continue writing
            END IF;
          WHEN rd =>                         --read byte of transaction
            busy <= '1';                     --resume busy if continuous mode
            IF(bit_cnt = 0) THEN             --read byte receive finished
              IF(ena = '1' AND addr_rw = addr & rw) THEN  --continuing with another read at same address
                sda_int <= '0';              --acknowledge the byte has been received
              ELSE                           --stopping or continuing with a write
                sda_int <= '1';              --send a no-acknowledge (before stop or repeated start)
              END IF;
              bit_cnt <= 7;                  --reset bit counter for "byte" states
              data_rd <= data_rx;            --output received data
              state <= mstr_ack;             --go to master acknowledge
            ELSE                             --next clock cycle of read state
              bit_cnt <= bit_cnt - 1;        --keep track of transaction bits
              state <= rd;                   --continue reading
            END IF;
          WHEN slv_ack2 =>                   --slave acknowledge bit (write)
            IF(ena = '1') THEN               --continue transaction
              busy <= '0';                   --continue is accepted
              addr_rw <= addr & rw;          --collect requested slave address and command
              data_tx <= data_wr;            --collect requested data to write
              IF(addr_rw = addr & rw) THEN   --continue transaction with another write
                sda_int <= data_wr(bit_cnt); --write first bit of data
                state <= wr;                 --go to write byte
              ELSE                           --continue transaction with a read or new slave
                state <= start;              --go to repeated start
              END IF;
            ELSE                             --complete transaction
              state <= stop;                 --go to stop bit
            END IF;
          WHEN mstr_ack =>                   --master acknowledge bit after a read
            IF(ena = '1') THEN               --continue transaction
              busy <= '0';                   --continue is accepted and data received is available on bus
              addr_rw <= addr & rw;          --collect requested slave address and command
              data_tx <= data_wr;            --collect requested data to write
              IF(addr_rw = addr & rw) THEN   --continue transaction with another read
                sda_int <= '1';              --release sda from incoming data
                state <= rd;                 --go to read byte
              ELSE                           --continue transaction with a write or new slave
                state <= start;              --repeated start
              END IF;    
            ELSE                             --complete transaction
              state <= stop;                 --go to stop bit
            END IF;
          WHEN stop =>                       --stop bit of transaction
            busy <= '0';                     --unflag busy
            state <= ready;                  --go to idle state
        END CASE;    
      ELSIF(data_clk = '0' AND data_clk_prev = '1') THEN  --data clock falling edge
        CASE state IS
          WHEN start =>                  
            IF(scl_ena = '0') THEN                  --starting new transaction
              scl_ena <= '1';                       --enable scl output
              ack_error <= '0';                     --reset acknowledge error output
            END IF;
          WHEN slv_ack1 =>                          --receiving slave acknowledge (command)
            IF(sda /= '0' OR ack_error = '1') THEN  --no-acknowledge or previous no-acknowledge
              ack_error <= '1';                     --set error output if no-acknowledge
            END IF;
          WHEN rd =>                                --receiving slave data
            data_rx(bit_cnt) <= sda;                --receive current slave data bit
          WHEN slv_ack2 =>                          --receiving slave acknowledge (write)
            IF(sda /= '0' OR ack_error = '1') THEN  --no-acknowledge or previous no-acknowledge
              ack_error <= '1';                     --set error output if no-acknowledge
            END IF;
          WHEN stop =>
            scl_ena <= '0';                         --disable scl
          WHEN OTHERS =>
            NULL;
        END CASE;
      END IF;
    END IF;
  END PROCESS;  

  --set sda output
  WITH state SELECT
    sda_ena_n <= data_clk_prev WHEN start,     --generate start condition
                 NOT data_clk_prev WHEN stop,  --generate stop condition
                 sda_int WHEN OTHERS;          --set to internal sda signal    
      
  --set scl and sda outputs
  scl <= '0' WHEN (scl_ena = '1' AND scl_clk = '0') ELSE 'Z';
  sda <= '0' WHEN sda_ena_n = '0' ELSE 'Z';
  
END logic;